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In the paper the scope of research carried out for the Transmission System Operator of the Polish Power
System PSE-Operator S.A. in order to make up forecasting tools supporting creation of coordination plans
is described. The Transmission System Operator is obliged legally to make up such plans for traffic and
maintenance of the transmission grid. The article describes in detail forecasting models examined for dif-
ferent time horizons, for which the coordination plans are made up. These models were designed for pre-
paring the daily, monthly and annual coordination plans by the PSE-Operator S.A. and they are currently
in the implementation phase. The model based on fuzzy estimators supporting daily coordination plans,
standard load curve model supporting monthly coordination plans and hybrid model supporting annual
coordination plans are presented. The models were verified using real data examples.
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Introduction

Forecasting of future loads of the power system is a crucial
operation for the operator of transmission system (OTS), who is
responsible for making up instant energy balance and adjustment
of energy supplies and deliveries to technical requirements and
actual energy demands.

Forecasting may be carried out for different time horizons –
within annual, monthly, weekly and daily plans. Prediction of a
day-to-day load variation remains a particularly challenging task,
therefore a number of the so-called daily coordination plans have
been developed. These include technical–commercial daily balance
(TCDB), initial daily coordination plan (IDCP), daily coordination
plan (DCP) and current daily coordination plan (CDCP). The classi-
fication was discussed in more detail in [32].

In the process of power system operation the fundamental role
is played by the DCP and CDCP. The IDCP and the TCDB include
aggregated general-type data. Within the framework of daily plan-
ning the present OTS’s knowledge and the control possibilities of
supply units, the forecasted energy demand, the quantity of deter-
mined production, international exchange and system limitations
are taken into account. The CDCP is created during the commercial
24 h period for the demands of traffic maintenance. Within this
framework the hourly power demand is divided into 15-min long
periods.
For every planning stage the forecast tools supporting the plan-
ning processes, with specific features in dependence on the plan-
ning horizon, are needed. Many of the forecasting methods
described in [6] could be adopted for this purpose.

A number of short-term load forecasting (STLF) models have
been designed in recent years. Conventional STLF models use
smoothing techniques (e.g. [4,35], regression methods (e.g.,
[28,9], and statistical analysis. Regression methods are usually
applied to model the relationship between load consumption and
other factors (e.g., weather, day type, and customer class) [13].
ARIMA and related models, where the load is modeled by the auto-
regressive moving average difference equation, are very popular
[16,22]. These models are based on the assumption that the data
exhibit specific features, such as autocorrelation, trend, and
seasonal variation. Conventional STLF methods have a strong theo-
retical basis and are still competitive with newer methods [36].

In recent years, artificial intelligence methods (AI) have been
widely applied to STLF [25]. AI methods of forecasting have shown
the capability to perform better when dealing with non-linearities
and other difficulties in modeling of the time series. They do not
require any complex mathematical formulations or quantitative
correlation between inputs and outputs. The AI methods most
often used in STLF can be divided as follows: neural networks
(e.g. multilayer perceptron, radial basis function network, Kohonen
network, recurrent networks) (e.g. [29,20,5]), fuzzy and neuro-
fuzzy systems (e.g., [24,38,34,21,10]) and expert systems (e.g.,
[33,18]).

New STLF methods are still being created. Some of them are
based on machine learning and pattern recognition techniques,
for example regression trees, cluster analysis methods (e.g., [14]),
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support vector machines (e.g., [26,2]), wavelets [1], fractal geome-
try, point function method [23], canonical distribution of the ran-
dom vector method [30], and the artificial immune system [7].

The models for medium-term and long-term load forecasting
developed in recent years are based mainly on the AI and machine
learning methods – neural networks (e.g., [15]), fuzzy and neuro-
fuzzy approaches (e.g. [3]), support vector regression (e.g., [19]),
and swarm intelligence (e.g., [37]).

In the subsequent part of the paper the proposed forecasting
methods supporting the daily, monthly and annual plans are pre-
sented in detail.
Fig. 1. The load time series of the Polish power system in the yearly (a) and weekly
(b) intervals.
Forecasting model supporting daily coordination plans

The basic input data for setting up the construction procedures
of daily coordination plans are the load forecasts. The daily fore-
casts of the Polish power system quarter-hour demand are pre-
pared according to the following schedule:

� for DCP the forecasts for the day t + 1 are prepared once a day, at
the midday of the day t,
� for IDCP the forecasts for the day t + 2 are prepared once a day,

at the midday of the day t,
� for TCDB the forecasts for the following 7 days t + 3, t + 4,. . .,

t + 9 are prepared once a day, at the midday of the day t,
� for CDCP the forecasts for the day t + 1 are prepared on demand

after the midday of the day t and during the day t + 1.

The subject of study in the present paper is the fuzzy estimator
of the regression function, which has recently been developed in
our team. In the course of subsequent research it has turned out,
that it outperforms other STLF models, such as the adopted predic-
tor of standard load curve and multilayer perceptron [31].
Similarity-based STLF models

The proposed forecasting model belongs to a class of similarity-
based methods (SB) of STLF [8]. These are nonparametric regres-
sion methods, where the regression function is estimated from
data using mutual similarities between the data points.

The load time series are characterized by annual, weekly, and
daily cycles due to the changes in industrial activities and climatic
conditions. In Fig. 1 the load time series of the Polish power system
is shown.

The SB methods use the analogies between time series
sequences with periodicities. The course of a time series can be
deduced from the behavior of this time series in similar conditions
in the past or from the behavior of other time series with similar
changes in time. At first of the SB forecasting procedure, the time
series is divided into sequences, which usually contain one period
(in the considered STLF problem, the period is equal to 96
quarters). To eliminate weekly and annual variations, the sequence
elements are preprocessed to extract their patterns. The pattern is
a vector with components that are functions of real time series ele-
ments, that is, quarter-hourly loads in this case. The input and out-
put (forecast) patterns are defined: x = [x1 x2 . . . x96] and y = [y1 y2

. . . y96], respectively. The patterns are paired (xt, yt), where yt is a
pattern of the time series sequence succeeding the sequence repre-
sented by xt, and the interval between these sequences (forecast
horizon s) is constant. The SB methods are based on the following
assumption: If the pattern xa in a period preceding the forecast
moment is similar to the pattern xb from the history, then the fore-
cast pattern ya is similar to the forecast pattern yb. Patterns xa, xb,
and yb are determined from the history of the process. Pairs xa–xb

and ya–yb are defined in the same way and are shifted in time by
the same number of series elements (usually this is a multiple of
the daily period).

The similarity measures are based on the distance measures
(most often Euclidean or Manhattan), correlation measures, or a
function similarity measure.

The way the x and y patterns are defined depends on the nature
of the time series (seasonal variations and trends) and the forecast
horizon. Functions transforming series elements into patterns
should be defined so that patterns could carry most information
about the process, and the model quality becomes maximal. More-
over, functions transforming forecast sequences into patterns y
should ensure the possibility of calculating the real forecast of
the time series elements.

Taking into account the schedule of the coordination plan prep-
aration, the forecast patterns y encode real loads (L) in the follow-
ing quarters of the forecast day t + s: Lt+s = [Lt+s,1 Lt+s,2 . . . Lt+s,96],
and the input patterns x map the quarter-hourly loads preceding
the forecast day – Lt0 ¼ ½Lt0 ;1Lt0 ;2 . . . Lt0 ;96�, where t is the day number
in which the forecasting procedure is carried out, s is a forecast
horizon equal to 3, 4, . . ., 9 for TCDB, 2 for IDCP, and 1 for DCP, t0

denotes 24-h period from the midday of the day t-1 to the midday
of the day t including 96 quarters. Lt0 contains the most current
information about system loads available at the moment of fore-
cast preparation. Vectors y are encoded using actual process
parameters (determined from the period t0), which allows us to
take into consideration the current variability of the process and
ensures the possibility of decoding.

On the basis of earlier experiments the following pattern defini-
tions xt = [xt,1 xt,2 . . . xt,96] and yt = [yt,1 yt,2 . . . yt,96] are adopted:

xt;i ¼
Lt0 ;i � Lt0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP96
l¼1ðLt0 ;l � Lt0 Þ

2
q ; ð1Þ

yt;i ¼
Ltþs;i � Lt0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP96
l¼1ðLt0 ;l � Lt0 Þ

2
q ; ð2Þ
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where t is the day number or the pattern number corresponding to
day t, i = 1, 2, . . ., 96 is the component number of L, x or y, t0 is the
24-h period from the midday of the day t � 1 to the midday of the
day t including 96 quarters, Lt0 ;i is the load at quarter i of period t0, Lt0

is the mean load in period t0.
Definition (1) expresses the normalization of the vectors Lt0 .

After normalization, they obtain unity length, zero mean, and the
same variance. Forecast pattern (2) is analogous to input patterns
(1), however, it is encoded using the current loads determined
from the process history, which enables us to decode the forecast
vector Lt+s after the forecast of pattern y is determined.

In the case of the forecast preparation procedure for CDCP we
have two variants:

(a) we prepare forecast at quarter k = 49, 50, . . ., 96 of the day t
for all quarters of the day t + 1 (s = 1),

(b) we prepare forecast at quarter k = 1, 2, . . ., 95 of the day t + 1
for the remaining quarters of this day (s = 0).

In variant (a) the period t0 in (1) and (2) includes the quarters from
k + 1 of the day t � 1 to k of the day t. In variant (b) the period t’
includes the quarters from k + 1 of the day t to k of the day t + 1,
and i in (2) denotes the quarters from k + 1 to 96, thus the forecast
pattern y in the case of (b) has the components i = k + 1, k + 2, . . .,
96.

The SB forecasting methods are based on the nonparametric
approach to the estimation of regression function. Flexibility of
nonparametric models is very useful in the preliminary analysis
of a dataset and may be helpful in the construction of parametric
models, which are usually more convenient to use but not neces-
sarily more precise. The general model of nonparametric regres-
sion is of the following form:

y ¼ mðxÞ þ e; ð3Þ

where y is the response variable, x is the predictor, e is the error
which is assumed to be un-biased and have a normal distribution
with a zero mean and constant variance and m(x) = E(Y|X = x) is
the regression curve.

The goal of the nonparametric regression is to estimate the
function m(x). Most methods implicitly assume that this function
is smooth and continuous. The most popular nonparametric
regression models are the kernel estimators, k-nearest neighbor
estimators, orthogonal series estimators, and spline smoothing
[17]. In the present paper the fuzzy estimators of the regression
function are applied to the STLF problem described above.

STLF model based on fuzzy estimators

The forecasting model uses a set of reference pattern pairs (xt,
yt) from the history of the process. For a given input pattern x⁄, rep-
resenting the current daily curve in the period t0, the most similar
patterns xt in the reference set are found, and the forecast pattern
y⁄ is formed from the patterns yt paired with them.

The model is based on the fuzzy set theory. Vectors x corre-
spond to the points in the 96-dimensional space. We assign the ref-
erence points xt, representing the same days of the week as x⁄

(Monday to Sunday), to the neighborhood of the input point x⁄.
(The distinction of days of the week during this procedure is
caused by the diversity of the load curve shapes for the different
days of the week.) Assigning the reference points to the neighbor-
hood of x⁄ is not sharp but fuzzy. The function of membership the
patterns xt to the neighborhood of pattern x⁄, depending on the
distance d(x⁄, xt), is defined:

lðx�; xtÞ ¼ exp � dðx�;xtÞ
r

� �a� �
; ð4Þ
where r is the width parameter and a is the shape parameter.
The membership function (4) is a Gaussian function with the

center at point x⁄ (see Fig. 2). Alternative membership functions
are presented in [8].

Now the estimator m(x) can be defined as follows:

mðx�Þ ¼
Pn

i¼1lðx�; xtÞytPn
i¼1lðx�; xtÞ

; ð5Þ

where n is the number of patterns xt representing the same days of
the week as pattern x⁄.

The patterns yt associated with patterns xt closer to the pattern
x⁄ have stronger influence on the formation of response y⁄, which
is calculated as the mean of patterns yt weighted by the member-
ship degrees l(x⁄, xt).

In the case of the forecast pattern yt representing an untypical
day (e.g. public holiday), it can deform the forecast pattern y⁄. To
eliminate situations like this to each pair of (xt, yt) a degree of con-
fidence wt is assigned. When pattern yt expresses an untypical day
wt = 0, otherwise wt = 1. The modified equation (5) with the
degrees of confidence has the form:

mðx�Þ ¼
Pn

t¼1wtlðx�;xtÞytPn
t¼1wtlðx�;xtÞ

: ð6Þ

For untypical days, a separate forecasting model has been
designed, which is based on the analogies between patterns repre-
senting the same holidays in neighboring years [31].

Incorporating the weather factors into the model needs a defi-
nition of the forecast pattern context. The homogeneous factors
correlated with loads represented by the pattern y are called its
context z. The context z is a vector of the factors or their functions,
e.g. the temperature context can express the daily vector of hourly
atmospheric temperatures. Different contexts can be defined, e.g.
related to temperature, humidity, wind strength, etc. It is assumed
that patterns yt with contexts zt which are more similar to the con-
text z⁄ of the forecasted pattern y⁄, are more informative and
should have a stronger influence on the regression curve than pat-
terns with distant contexts. The membership degree of the context
zt to the context z⁄ is modeled using the function of the same form
as (4):

lðz�; ztÞ ¼ exp � dðz�; ztÞ
rz

� �az� �
; ð7Þ

The estimator m(x) in this case is of the form:

mðx�Þ ¼
Pn

t¼1

Qm
i¼1lðzi

�; zi;tÞwtlðx�;xtÞytPn
t¼1

Qm
i¼1lðzi

�; zi;tÞwtlðx�; xtÞ
; ð8Þ

where zi is the ith context.
Fig. 2. Exemplary plots of membership function (4).



Fig. 3. Forecast errors for DCP for: successive quarters of the day (a), day types (b)
and months (c).
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When all contexts of the tth pattern (zi,t) are similar to the con-
texts of the forecasted pattern z�i , then the product of the member-
ship degrees lðz�i ; zi;tÞ, i = 1, 2, . . ., m is high, close to 1. When some
contexts zi,t are not similar to z�i , the product of lðz�i ; zi;tÞ decreases,
and consequently the total weight of the tth pattern yt decreases.
This results in the less influence of yt in the weighted mean (8).
The influence level of the individual contexts on the forecast can
be controlled by the membership function parameters – rz and az.

In the application example described in the next section only
the temperature context is used in the model, because from a num-
ber weather factors (temperature, wind strength, clouds, humidity,
rainfall and snowfall) it affects the load most [31]. The temperature
context zT is a vector of the mean hourly atmospheric tempera-
tures in the period t0 : zT;t ¼ ½Tt0 ;1Tt0 ;2 . . . Tt0 ;24�. If the temperature
forecasts on the day t + s are available, the temperature context
can be formed from them.

Application examples

To demonstrate the effectiveness of the proposed approach, the
load forecasting of the Polish power system was carried out using
historical quarter-hourly load and weather (temperature) data
from the period 1997.05.01 – 2009.11.16. The dataset was divided
into two subsets: training and test. The first sequences of the time
series (from 1997.05.01 to 2007.11.19) were included in the train-
ing set, and the latest sequences were included in the test set. The
training set was used to optimize the model (in leave-one-out pro-
cedure) and the test set – to the assessment of model performance.

The earlier experiments have shown that the shape parameter a
is not as important as the width parameter r [8]. So we assumed
the constant value of a = 2 and we adjust the value of r. The Euclid-
ean distance was used in (4) and (7). Untypical days (13 days in the
year) were forecasted using a separate model [31].

The model quality was evaluated using the mean average per-
centage error (MAPE), which is conventionally used in STLF. Table 1
presents the mean error (MAPE), the daily peak load error (MAPEdp),
the daily second peak load error (MAPEd2p), and the daily valley
load error (MAPEdv). MAPE for DCP is presented in Fig. 3, and the
cumulative distribution function F(MAPE) is presented in Fig. 4.

Fig. 5 shows how the forecast error for CDCP changes depending
on the moment of the forecast preparation, which is shifted in time
with regard to the moment of DCP forecast preparation (i.e. 12
noon of the day t, that is 48 quarter) for 1, 2, . . ., 143 quarters
ahead. The shift for one quarter means the forecast for all quarters
of the day t + 1 which is prepared at the 49th quarter of the day t.
The shift for 143 quarters means the forecast for the last quarter of
the day t + 1, which is prepared at the 95th quarter of this day.

The lowest errors are observed for the workdays Tuesday – Fri-
day, whereas the higher ones for Mondays and Sundays. It is worth
to notice that the mean forecast error for daily peaks is smaller
than the mean error for all quarters, independently on the forecast
horizon s. Fig. 3a) shows the lower errors for valley loads. This fact
is probably related with the lower load variance during the nights
than during the days, especially in peak periods.
Table 1
Forecast errors for DCP, IDCP and TCDB.

Plan s MAPE MAPEdp MAPEd2p MAPEdv

DCP 1 1.67 1.62 1.95 1.65
IDCP 2 1.99 1.89 2.17 2.07

TCDB 3 2.24 2.08 2.35 2.43
4 2.37 2.18 2.45 2.65
5 2.48 2.30 2.51 2.79
6 2.44 2.24 2.41 2.78
7 2.55 2.38 2.51 3.00
8 2.63 2.47 2.64 3.08
9 2.69 2.51 2.69 3.08

Fig. 4. The cumulative distribution function F(MAPE) for DCP.
The forecasts for CDCP become more and more accurate with
the shift of the forecast preparation moment, but in same cases
errors increase with the shift, e.g. for quarters from 60 to 72.

In the next study we compare the proposed STLF model based
on fuzzy estimators (FE) with the classical STLF models: ARIMA
and exponential smoothing (ES), as well as with the machine learn-
ing models: neural networks and random forest. The first three
models are described in detail in [11] and the last one is described
in [12]. We use hourly electrical load data of the Polish power sys-
tem from the period 2002–2004 (this data can be downloaded
from the website http://gdudek.el.pcz.pl/varia/stlfdata). Our goal

http://gdudek.el.pcz.pl/varia/stlfdata


Fig. 5. The forecast error for CDCP depending on the shift of the forecast
preparation moment.
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is to forecast the load curve for the next day (s = 1). The moment of
forecasting is the last hour of the day preceding the day of forecast.
The test set includes 30 days from January 2004 (without untypical
1 January) and 31 days from July 2004. The forecast errors and
their interquartile ranges in Table 2 are shown. As we can see from
this table errors for FE, ANN and RF are similar and lower than
errors for ARIMA and ES (that was confirmed by the Wilcoxon
signed-rank test). Notice that FE model is much less complex than
comparative models. In the basic variant, which has been used in
this study, it has only one free parameter (r) which is easy to esti-
mate. So the learning of the model is fast.

Forecast models supporting monthly coordination plans

For the demands of monthly coordination plans a number of
experimental tests for many forecasting models, based on different
mathematical tools, have been developed. The most successful ones
in terms of accuracy and efficiency are two models: the adjusted pre-
dictor of standard load curve (SLC) and the analogue model. Below
the basic assumptions concerning the SLC model are presented.

Generally, the model forecasts the load time dependencies at
first as typical ones (averages from the past) for a given kind of
day. These dependencies are next corrected using the procedures
based on auxiliary explanatory variables. The presented model
may be classified as the so-called ‘‘standard load curve’’.

Routine and procedures implementing the SLC model

Determination of the static load dependencies in the input data
set is carried out within the following steps [6]:

� Elimination of the details pertaining to season variability from
the data set by means of polynomial approximation of average
week power using the least square method. Fig. 6 shows such
approximation.
� Determination of typical 24-h load profiles for every day of a

week in individual months of the year from the input data set,
which is devoid of excessive 24 h day sets (those include public
holidays, as well as days preceding and following them). Typical
profiles are determined as arithmetical averages of static
dependencies devoid of season variability.
Table 2
Forecast errors for benchmark models.

Model January July Mean

MAPE IQR MAPE IQR MAPE IQR

FE 1.22 1.30 0.96 0.89 1.08 1.06
ARIMA 2.64 2.34 1.21 1.24 1.91 1.67
ES 2.35 1.88 1.19 1.30 1.76 1.56
ANN 1.32 1.30 0.97 1.01 1.14 1.15
RF 1.42 1.39 0.92 0.98 1.16 1.17
� Clustering of days excluded in the preceding stage into classes:
holidays occurring from Monday to Friday, holidays occurring
on Saturdays and Sundays, days preceding holidays from Mon-
day to Friday, days following holidays from Monday to Friday,
days preceding and following holidays occurring on Saturdays
and Sundays.
� Determination of the polynomial approximations (2nd–3rd

order) q = F(s) for every of the above-described groups for pairs
of quantities (s, qq), where:
s ¼ cos nd �
2p
365

� �
; ð9Þ

qq ¼
Pstatdes

q

Pprof
q

; ð10Þ

and nd is the number of the day in the year, Pstatdes
q the true static

load, devoid of static variability, in the 15-min period q of the
considered 24-h period, Pprof

q is the power during the q 15-min
period of the typical profile pertaining to the considered 24-h
period.
� Creation of secondary input set consisting of proper typical pro-

files Pprof
q and of products Fq(s) � Pprof

q for excessive 24-h time
periods.
� Creation of the training set for the radial-basis-function neural

network (RBF) from the secondary input set. The components
of the input vector – the so-called vector of feature space [27]
are the explanatory variables. In the context of this work these
are: time (day of year), day of week and kind of day (according t
the aforementioned classification of excessive days). Other load
determinants, e.g. the forecast weather and incidental factors
could also be included here. The output vector is the series of
96 values of correction coefficients q0q for each quarter of the day:
q0q ¼
Pstatdes

q

P0prof
q

; ð11Þ

where P0prof
q is an appropriate curve from the secondary set.

� For RBF networks it is important to code properly the compo-
nents of features. A trivial time representation using e.g. the
number of month could mislead RBF network, that December,
represented with ‘‘12’’ is distant from January, represented with
‘‘1’’ in the feature space. Similarly in the case of days of week,
Friday shall be presented to the RBF network as lying closer to
Saturday and Sunday than to Monday or Tuesday.
� In the presented model, time is coded using the aforementioned

s variable (approximately proportional to the duration length of
night in the considered season of year, whereas day of week and
kind of day are coded using long-term average load (static,
devoid of season variability).
� The RBF network learning to map the feature space into output

vector for setting the prediction of correction coefficients q0q.
During learning for determination of centers in the Gaussian
basis functions [27] the k-means clusterization method is used,
whereas for weight determination of the output layer the ridge
regression method with iterative optimization of smoothing
parameter [27] is used:
wq ¼ A�1HTqq; ð12Þ

where wq is the weight vector of the qth neuron of the output
layer, qq the vector of demanded outputs of the qth neuron, HT

the transposed Jacobean of errors of qth neuron of the network
output layer with respect to its weights (for the RBF network
with linear output layer, for its every qth neuron, H is the activa-
tion matrix of neurons of the radial layer), A is the hessian of
network errors approximated with the Equation:
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A ¼ HT Hþ kI; ð13Þ

where I is the unit matrix and k is the smoothing parameter; its
re-estimation formula is

kiþ1 ¼
qT

qP2qqdiagðA�1 � kiA
�2Þ

wT
qA�1wqdiagðPÞ

; ð14Þ

where:

P ¼ I�HA�1HT ; ð15Þ

diag(.) – the sum of elements of the main diagonal.
� Assignment of respective profiles typical for every forecast day.
� Correction of the above-given profiles for the excessive days

with the functions Fq(s).
� Prediction of correction coefficients qq using the RBF network

and their use for definite profile adjustment.
� Carrying out the reverse activities to the procedures of removal

of season variability and long term linear trends.
� Incorporation of auxiliary control variables into the model

inputs. The correlation analysis is useful for identification of
the correct form of these variables and their application scopes.

In order to create the monthly coordination plans, OTS requires
information on one month-ahead forecasts of the maximum peak
load, secondary peak load and minimum load in every day. The
quality assessment of the SLC model is made using the validation
set, covering final 24 months in the data set, i.e. from November
2008 to October 2009. The earlier data from January 2000 to Octo-
ber 2008 are used for construct and optimize the model. It is
assumed that the forecast procedure is run on the 25th day of
the month preceding the forecast period (on 23rd day in the case
of forecasts for March) and for making up the forecast the pieces
of data concerning system load until 24th (or 22nd for February)
day of month, preceding the month under forecast. The average
MAPE errors obtained with the SLC model for individual forecast
months are depicted in Figs. 7 and 8.

Analyzing the results of forecasts with the SLC method it has to
be stated that in this model, the lowest errors are observed for
work days from Monday till Friday, whereas the increased ones
are observed for Saturdays and Sundays (see Fig. 7). During the
year the lowest errors occur in September (MAPE < 1.5%), whereas
the highest ones in November and December (see Fig. 8). The aver-
age MAPE, calculated for a 2-years-long period (since November
2008 until October 2009), obtained for forecast of the daily peaks
were equal to 2.5%, for secondary peaks – 2.9%, while the highest
ones, for forecasts of daily minima, were equal to 3.3%.

Forecast model supporting annual coordination plans

The control quantities in the forecast model supporting annual
coordination plans are the forecasts made three years ahead of the
annual load peaks in the Polish Power System and of annual energy
gross.

On the basis the forecasts the average load level in the power
system is calculated from the formula:

m̂rj ¼
bArj

Trj
bPr max j

; ð16Þ

where bAr is the forecast of annual energy gross, Tr the number of
hours in the year (8760 h), bPr max the forecast of annual peak load,
j is the subsequent number of the year under forecast.

It is also necessary to determine the levels of load variation for
monthly peaks, monthly minima, averages from peak days in
month for individual months during the year on the basis of the
process history, which should be considered the longest possible.
For the experiment verification, the data from the range 1990–
2009 were used.

Having determined the quantity of the average annual load
level m̂rj for the given year, the forecasts of variation indicators
for 36 months ahead concerning the monthly peaks, the monthly
minima as well as the averages from peak days during the month
are determined from hybrid functions of the form:

r̂0ijk ¼ aikf iðmrjÞLIN1w1 þ bikf iðmrjÞLIN2w2 þ vikf iðmrjÞLIN3w3; ð17Þ

where j is the subsequent number of forecast year j = 1, 2, . . ., 3, i the
month under forecast i = 1, 2, . . ., 12, k-type of the forecast: 1 for
peak, 2 for minimum and 3 for average of peaks during the month,
f iðmrjÞLIN1 the linear form of the approximation function determined
from the process history for the initial time interval of approxima-
tion, f iðmrjÞLIN2 the linear form of the approximation function deter-
mined from the process history for the time interval between the
initial approximation instant and the final approximation instant,
f iðmrjÞLIN3 the linear form of the approximation function determined
from the process history for the final time interval of approxima-
tion, a;b;v the percentage share coefficients, w1;w2;w3 is the
weight coefficients of information aging.

Using any optimization tool the values of parameters a; b;v for
the process history should be determined. In the considered tests
the minimum of fitting error MAPE was used as the optimization
criterion. As far as the weight coefficients of information aging
are concerned, the arbitrary values for relevant intervals from the
process history are assumed: w1 = 0.1, w2 = 0.5 and w3 = 1.0. The
final individual power values are calculated from the formula:

bPmkij¼ r̂0ijkA
bPr max j; for i¼1; . . . ;12; j¼1; . . . ;3; k¼1; . . . ;3; ð18Þ

The afore-described forecasting method for the annual coordi-
nation plan was verified on the Polish power system data from
the period 1991–2009. The accuracies obtained were as follows
for 17 forecast steps, each 36 months long:

� For the forecasts of monthly peaks, the average MAPE error was
1.75% (from 1.26% up to 2.19% in 17 steps).
� For the forecasts of monthly minima the average MAPE error

was 2.98% (from 1.97% up to 3.97% in 17 steps),
� For the forecasts of monthly average peaks in 24-h period the

average MAPE error was 1.50% (from 0.96% up to 1.89% in 17
steps) (see Figs. 6–8).

Figs. 9–11 depict the obtained fitting accuracy for the forecast
values of peak power, minimal power and average value of the
peak from peaks coming from working days, obtained with the
use of the afore-described model. An ex-post step prediction for
each of the examined quantities was carried out for the years
1991–2009. For 17 forecasting steps, 36 month-long each, we
obtained 612 MAPE for each quantity.
Summary

In this article we present the forecasting methods for preparing
the daily, monthly and annual coordination plans. The similarity-
based fuzzy forecasting model, applied to the daily coordination
plans, is characterized by simplicity and high accuracy. This model
turns out to be one of the best in comparison to other methods
tested by us earlier, including neural networks (multilayer percep-
tron, Kohonen, counterpropagation, RBF, GMDH), regression trees,
random forests, neuro-fuzzy nets, cluster analysis methods, naïve
methods, nearest neighbor method, kernel estimators and artificial
immune system. A comparison of many similarity-based methods
is reported in [8].
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Fig. 7. The average MAPE errors obtained with the SLC model, partitioned into days
of week and weekly averages.

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12

Number of the month

M
A

PE
 [%

]

MAX MAX-2 MIN

Fig. 8. The average MAPE errors obtained using the SLC model, partitioned into
months.

0

50

100

150

200

250

MAPE [%]

Fr
eq

ue
nc

y

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Frequency

Total value [%]

228 128 115 59 36 27 19

37.25 58.17 76.96 86.60 92.48 96.90 100.00

1.10 2.20 3.30 4.40 0.00 5.49 >

Fig. 9. Error distribution of forecast peak power for subsequent 36 months.

0

50

100

150

200

250

300

MAPE [%]

Fr
eq

ue
nc

y

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Frequency

Total value [%]

282 161 100 42 23 3 1

46.08 72.39 88.73 95.59 99.35 99.84 100.00

1.09 2.18 3.28 4.37 5.46 > 0

Fig. 10. Error distribution of forecast average peak days for subsequent 36 months.

0

50

100

150

200

250

300

350

400

MAPE [%]

Fr
eq

ue
nc

y

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Frequency
Total value [%]

368 122 53 53 9 6 1

60.13 80.07 88.73 97.39 98.86 99.84 100.00

2.60 5.20 7.80 10.40 13.00 > 0

Fig. 11. Error distribution of forecast minimum load power for subsequent
36 months.

100 T. Popławski et al. / Electrical Power and Energy Systems 65 (2015) 94–101
The model based on fuzzy estimators of the regression function
has only two user defined parameters – the widths of the member-
ship functions. These parameters are easy to estimate, and the
model sensitivity to their deviation from the optimal values is lim-
ited [8]. Models with a fewer number of parameters have better
generalization properties. The additional input information, e.g.
weather factors, can be incorporated to the model with the help
of contexts. The model demonstrates low sensitivity to incomplete
and noisy input information [8].

The advantages of the SLC method used for the monthly coordi-
nation plans is its scalability. It can be used successfully for sys-
tems of all sizes and for a forecast horizon from days to months.
For the short horizons this method gives satisfactory results with
relatively low computational cost. In addition, the algorithm can
be simplified by omitting the whole stage for the use of RBF. Then



T. Popławski et al. / Electrical Power and Energy Systems 65 (2015) 94–101 101
the SLC method becomes similar to the analog methods while
maintaining the advantages for the untypical days. When we use
SLC with RBF we can include additional explanatory variables to
the model in an easy way.

The weakness of the SLC method is its high sensitivity to both
the temporary and permanent disturbance of the process. In this
case, additional procedures are required for transforming the his-
torical data, which complicates the usage. In comparison with
other methods adaptability of SLC is limited, and the method has
a larger inertia.

The forecasting model used for the annual coordination plans
shows a good fit to the historical data, what may be proven with
charts shown in Figs. 9–11. Assuming that the relationships deter-
mined from the historical 19-year period do not change in the
future, it may be expected that the forecasts for the successive
years will be just as accurate.
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